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In this paper the general equations of motion for thick elastic plates with
arbitrary shape are derived by using a variational principle. In addition to the
influences of the bending, the transverse shear deformation and the rotatory
inertia, the proposed theory also contains the effects of the transverse normal
stress and the membrane forces. The equations presented in this paper can be
reduced to those deduced by E. Reissner and R. D. Mindlin. Some numerical
results are compared with those obtained from the Reissner–Mindlin plate theory
and the classical plate theory. It is found that for thick plates there exists a dense
region of frequencies and the position of frequencies is shifted, so that the
influence of the transverse normal stress must be considered.
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1. INTRODUCTION

The classical plate theory is based on the Kirchhoff–Love assumptions [1]: (a) the
plate is thin; (b) the deflections of the plate are small; (c) the normal stresses
perpendicular to the middle surface can be neglected in comparison with the other
stresses; (d) straight lines normal to the undeformed middle surface remain straight
and normal to the deformed middle surface.

In view of these assumptions, the classical plate theory cannot be expected to
hold for plates whose thickness is large with respect to the span. Neither can it
be applied to describe the dynamic behavior of plates when the wave numbers are
large. Therefore, in order to adequately describe the motion of plate-type
structures, various improved theories of plates have been developed and
established [2–12]. For example, the Reissner–Mindlin plate theory replaces the
normal line assumption by the straight line assumption and contains the influences
of the transverse shear deformation and the rotatory inertia. It is able to describe
a wider range of phenomena than the classical plate theory which includes only
bending effects. However, the Reissner–Mindlin plate theory is restricted to the
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analysis of only moderately thick plates because the transverse normal stress is
neglected. In addition, the Reissner–Mindlin plate theory neglects the thickness
change of the plate (as does the classical plate theory) which means that the
transverse normal strain is also neglected. Such approximations can be removed
by using either the three-dimensional theory or improved theories where the
thickness change is also considered. In several papers (e.g., references [11, 12])
stability and vibration problems of laminated rectangular plates are analyzed by
applying the finite element method to such a refined plate theory.

This paper presents a consistent plate theory which contains not only the
influences of the bending, the transverse shear deformation and the rotatory inertia
but also the effects of the transverse normal stress and the membrane forces. Thus,
it has a wider range of application than the moderately thick plate theories. All
in all, six independent variables are used. To point out the influence of the
transverse normal stress, we introduce a fairly simple analytical model. It assumes
constant normal stress and normal strain across the thickness co-ordinate.
However, even this simple model is capable of showing the influence of the
transverse normal stress on the eigenmodes of the plates. In special cases the
solution of the problem to be investigated can be given in closed form.

It is noted that the use of six independent variables is not a new idea; see, e.g.,
reference [13]. A comprehensive review of this matter is beyond the scope of this
paper. For more information please refer to reference [14].

2. KINEMATIC AND CONSTITUTIVE EQUATIONS

The salient features of the plate geometry are shown in Figures 1(a) and (b).
The plate is referred to by a curvilinear orthogonal co-ordinate system x1, x2 and
x3, see Figure 1(a). The axes x1 and x2 lie in the middle surface of the plate, x3

points into the direction of the normal to the middle surface, forming a right-hand
co-ordinate system. The arc lengths are denoted by s1 and s2. One has the relations

ds1 =A1 dx1, ds2 =A2 dx2. (1)

The quantities A1 and A2 are the coefficients of the first fundamental form of the
middle surface of the plate. When the metric in tensorial notation is used these
quantities are also referred to as g11, g22 and g12 in the literature. Since we restrict
ourselves to an orthogonal co-ordinate system, the coefficient g12 =A12 =0. For
example, A1 =A2 =1 for rectangular plates and A1 =1, A2 = r for circular plates
(r denotes the radius).

We introduce the dimensions of the plate with x1$ [0, a], x2$ [0, b], x3$ [−H/2,
H/2], where H is the thickness of the plate. The six faces w1 to w6 are referred to
by w1 : x1 0 0, w2 : x1 0 a, w3 : x2 0 0, w4 : x2 0 b, w5 : x3 0−H/2, and finally w6 :
x3 0H/2. This notation implies that the respective co-ordinate is held at the given
value while the other co-ordinates vary within their bounds. Figure 1(b) shows a
rectangular plate. This plate is used later for the numerical analysis.
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In considering the bending, the transverse shear deformation, the transverse
normal strain and the membrane strains, the displacement vector can be taken as

u� *(x1, x2, x3, t)= u� (x1, x2, t)+ x38� (x1, x2, t), (2)

with

u� *= [u*1 , u*2 , u*3 ]T, u� =[u1, u2, u3]T, 8� =[81, 82, 83]T, (3–5)

Figure 1. (a) Curvilinear co-ordinate system; (b) rectangular plate used in the numerical analysis.
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where ui (i=1, 2, 3) are the displacement components of the middle surface of the
plate, 81 and 82 are the angles of rotation of the transverse normal in the x1–x3

and x2–x3 planes, 83 is the transverse normal strain, t is the time and superscript
T denotes transposition.

Using equation (2), the kinematic equations are written as

e� *=$E� c11

E� c21

E� c12

E� c22%$u�
8� % , (6)
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e� *= [e� *11, e� *22, e� *33, e� *12, e� *13, e� *23]T, (11)

where e� * is the generalized strain vector of the plate.
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Considering the three-dimensional stress–strain relations and the kinematic
equations, we obtain the constitutive equations

n� a =$N� 1u

N� 2u

N� 18

N� 28%$u�
8� %, m� a =$M� 1u

M� 2u

M� 18

M� 28%$u�
8� %. (12, 13)

Here,

n� a =[N11, N22, N33, N12, N21, N13, N23]T, (14)

m� a =[M11, M22, M12, M21, M13, M23]T (15)

are the stress and moment resultant vectors defined by

Nij =g
H/2

−H/2

s*ij dx3 (i, j=1, 2, 3), (16)

Mij =g
H/2

−H/2

x3s*ij dx3 (i=1, 2 and j=1, 2, 3), (17)

and the generalized stress vector comprising the independent components of the
stress tensor is introduced as

s� *= [s*11, s*22, s*33, s*12, s*13, s*23]T. (18)

Finally, N� iu , N� i8 , M� iu , M� i8 , (i=1, 2) are differential operator matrices which
contain the modulus of elasticity, E, Poisson’s ratio n and the transverse shear
correction factor k. Compared with the displacement field proposed by Kant
Mallikarjuna [12], the displacement field defined in equation (2) neglects the higher
order expansion terms in the thickness as well as in the in-plane co-ordinates. As
a consequence, the transverse shear strain and stress fields violate the boundary
conditions at the upper and the lower faces of the plate so that the shear correction
factor k is still needed to compensate the simplified stress field. Moreover, the
transverse normal strain and stress are constant across the thickness of the plate.
These quantities should be treated as the mean transverse normal strain and stress,
respectively. The proposed model has a wider range of application than the
moderately thick plate theories. However, it will still fail to model very thick plates
correctly. In such cases a more elaborate displacement field—like the one proposed
in reference [12]—should be used.

3. VARIATIONAL PRINCIPLE AND EQUATIONS OF MOTION

The strain–energy density is introduced by

W*= 1
2s� *Te� *. (19)
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The strain energy of the plate is obtained by integration over the whole volume
of the plate which yields

W=
1
2 g

a

0 g
b

0 g
H/2

−H/2

s� *Te� *A1A2 dx3 dx2 dx1. (20)

The kinetic energy density is given by

T*=
1
2

r0 1

1t
u� *1

T

0 1

1t
u� *1 , (21)

r being the material mass density. It is used to obtain the kinetic energy

T=g
a

0 g
b

0 g
H/2

−H/2

1
2

r0 1

1t
u� *1

T

0 1

1t
u� *1A1A2 dx3 dx2 dx1, (22)

whereby the influence of the rotatory inertia is considered.
Let fi (i=1, 2, 3) denote the xi-component of the external forces per unit area

acting at the surface of the plate. The work done by these forces is

We =gg
S

f� Tu� * dS (23)

with

f� =[ f1, f2, f3]T, (24)

the integration being extended over the whole surface S of the plate.
The work done by the body force per unit volume

q� =[q1, q2, q3]T, (25)

where qi (i=1, 2, 3) denotes the xi-component of the body force, is

Wb =ggg
V

q� Tu� * dV, (26)

the integration being extended over the whole volume V of the plate.
Hamilton’s principle

d g
t2

t1

L dt=0, (27)

where the Lagrange function is given by

L=T−[W−(We +Wb )], (28)
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can be applied to deduce the equations of motion as well as the appropriate
boundary conditions. One obtains the general equations of motion for thick elastic
plates with arbitrary shape

−J0
12ui

1t2 +
1

1x1
(N1iA2)+

1

1x2
(N2iA1)+N	 i +(N*3i +N� i )A1A2 =0,

−J2
128i

1t2 +
1

1x1
(M1iA2)+

1

1x2
(M2iA1)+M	 i +(Ni3 +M*3i +M� i )A1A2 =0, (29)

with the abbreviations

J0 = rA1A2H, J2 = rA1A2H3/12, (30)

[N*1i , M*1i ]=g
H/2

−H/2

[1, x3] fi dx3=w1 +w2 , [N*2i , M*2i ]=g
H/2

−H/2

[1, x3] fi dx3=w3 +w4 ,

(31)

[N*3i , M*3i ]= [1, x3] fi =w5 +w6 , (32)

[N� i , M� i ]=g
H/2

−H/2

[1, x3]qi dx3 (i=1, 2, 3), (33)

N	 i =Nij
1Ai

1xj
−Njj

1Aj

1xi
, M	 i =Mij

1Ai

1xj
−Mjj

1Aj

1xi

(i=1, j=2 and i=2, j=1), (34)

N	 3 =M	 3 =0.

The notation wk +wl in the equations (31) and (32) should be simply read as . . .
evaluated at the faces k and l and added.

With the generalized displacement vector

v� =[u� T, 8� T]= [u1, u2, u3, 81, 82, 83]T, (35)

the equations of motion, including damping, can be written compactly in the form
.. .

M� v� +C� v� +K� v� = p� . (36)

Here, M� , C� , K� are the mass matrix, the damping matrix and the differential
operator stiffness matrix, while dots denote differentiation with respect to the time
t. To obtain equation (36), we made use of the Rayleigh assumption, namely
C� = caM� + cbK� , ca and cb being constants. The generalized load vector p� acting at
the middle surface is determined by the external forces acting at the surface of the
plate and by the body force. It is expressed by

p� =[p1, p2, p3, p4, p5, p6]T, (37)

with

pi =N*3i +N� i and pi+3 =M*3i +M� i (i=1, 2, 3). (38)
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From equations (32) and (38) it can be seen that the component f3 of the external
force contributes not only to the component p3 of the generalized load vector but
also to the component p6 which causes the transverse normal stress and the
transverse normal strain. Similarly, the components f1 and f2 contribute not only
to the components p1 and p2 but also to the components p4 and p5 which cause
the bending. Because there exist elastic coupling terms in K� , p1 and p2 cause not
only the membrane stresses but also the transverse normal stress and/or the
transverse normal strain.

It is evident that equation (36) can be reduced to the equation deduced by
Reissner and Mindlin if the effects of the transverse normal stress and the
membrane forces are neglected. The improved theory with six independent
variables, the Reissner–Mindlin plate theory with three independent variables (u3,
81 and 82) and the classical plate theory with one independent variable (u3) are
denoted in the following by IT6, MT3 and CT1, respectively.

The boundary conditions are

ui =Ui or Nji =N*ji , 8i =Fi or Mji =M*ji

(i=1, 2, 3) for the boundaries xj =const. ( j=1, 2), (39)

where Ui and Fi are given quantities. In addition, the initial displacements and
velocities

. .
v� (x1, x2, t)=t=0 = v� 0(x1, x2), v� (x1, x2, t)=t=0 = v� 0(x1, x2) (40, 41)

with
. . .

v� 0 = [u� T0 , 8�
T
0 ]T, v� 0 = [u� T0 , 8� T

0 ]T (42, 43)

must be specified.

4. ORTHOGONALITY CONDITIONS FOR THE NATURAL MODE FUNCTIONS

An expression for the generalized displacement vector in any mode of free
vibrations may be written in the following form for arbitrary wave numbers m and
n,

v� (x1, x2, t)= s
m

s
n

v� mn (x1, x2) sin vmnt, (44)

with

v� mn =[U1mn , U2mn , U3mn , F1mn , F2mn , F3mn ]T. (45)

Here U1mn to F3mn denote test functions in x1 and x2 for the respective degree of
freedom (DOF). Substituting equation (44) into the free vibration equation
without damping,

..
M� v� +K� v� =0, (46)
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and using the homogeneous boundary conditions and the constitutive equations
leads to the orthogonality conditions for the natural mode functions

Imnkl6=0 for m$ k* n$ l
$0 for m= k+ n= l7 , (47)

with

Imnkl =g
a

0 g
b

0

v� TmnM� v� kl dx2 dx1. (48)

It has to be kept in mind that for the six DOF system under consideration there exist
in general six eigenfrequencies (branches) for every combination of the wave
numbers m and n. Hence, equation (44) implies a summation over p=1 . . . 6 for
every term with index mn; see section 6.

5. SOLUTIONS FOR FORCED VIBRATIONS

It is assumed that the mode functions v� mn form a complete set. Therefore, the
generalized displacement vector, the generalized load vector as well as the initial
displacement and velocity vectors may be expressed in the following form for any
wave numbers m and n:

v� (x1, x2, t)= s
m

s
n

v� mn (x1, x2)Tmn (t), (49)

p� (x1, x2, t)= s
m

s
n

v� mn (x1, x2)Pmn (t), (50)

v� 0(x1, x2)= s
m

s
n

v� mn (x1, x2)Tmn (0), (51)

.v� 0(x1, x2)= s
m

s
n

v� mn (x1, x2)T� mn (0). (52)

Considering the orthogonality conditions and using the Rayleigh damping
assumption yields the equations for the generalized co-ordinates Tmn as

T� mn (t)+2zmnvmnT� mn (t)+v2
mnTmn (t)=Pmn (t), (53)

where

zmn =
ca + cbv

2
mn

2vmn
, (54)
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Pmn (t)=
1

Imnmn g
a

0 g
b

0

p� T(x1, x2, t)M� v� mn (x1, x2) dx2 dx1, (55)

$Tmn (0)
T� mn (0)%=

1
Imnmn g

a

0 g
b

0 $v�
T
0 (x1, x2)M� v� mn (x1, x2)

v� T0 (x1, x2)M� v� mn (x1, x2)% dx2 dx1, (56).

while ca and cb denote the factors of the external and internal damping,
respectively. The solution of equation (53) with the initial conditions (56) is

Tmn (t)= e−omnt$Tmn (0) cos v*mnt+
T� mn (0)+ omnTmn (0)

v*mn
sin v*mnt%

+
1

v*mn g
t

0

e−omn (t− t)Pmn (t) sin v*mn (t− t) dt (57)

with

omn = zmnvmn , v*mn =vmnz1− z2
mn . (58, 59)

Substituting equation (57) into equation (49) leads to the solution for forced
vibrations with damping.

As a typical example we consider the concentrated load

p� (x1, x2, t)=P(t)d(x1 − xa , x2 − xb )[0 0 1 0 0 0]T, (60)

where d(x1 − xa , x2 − xb ) is the two-dimensional Dirac function. The correspond-
ing solution is

v� (x1, x2, t)

= s
m

s
n

v� mn (x1, x2)6e−omnt$Tmn (0) cos v*mnt+
T� mn (0)+ omnTmn (0)

v*mn
sin v*mnt%

+
J0U3mn (xa , xb )

Imnmnv*mn g
t

0

e−omn (t− t)P(t) sin v*mn (t− t) dt7 . (61)

6. NUMERICAL RESULTS

Numerical computations were carried out for the undamped free and forced
vibration analysis of rectangular plates, using the improved theory with six
independent variables (IT6). These results are compared with those obtained from
the Reissner–Mindlin plate theory (MT3) and the classical plate theory (CT1). The
boundary conditions are given by

N11 = u2 = u3 =M11 =82 =83 =0 (for the faces w1 , w2 ),

N22 = u1 = u3 =M22 =81 =83 =0 (for the faces (w3 , w4 ).
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T 1

Non-dimensional frequency parameters and non-dimensional characteristic vectors;
a/b=1, H/a=0·01

V111 V112 V113 V114 V115 V116

0·9997 46·13 74·38 3262 3263 6079

ev*111 ev*112 ev*113 ev*114 ev*115 ev*116

0 −0·7071 0·7071 0 0 −1·57E-03
0 0·7071 0·7070 0 0 −1·57E-03

0·9998 0 0 o 7·40E-03 0
−1·57E-02 0 0 −0·7071 0·7070 0
−1·57E-02 0 0 0·7071 0·7070 0

0 o 6·67E-03 0 0 1− o

V121 V122 V123 V124 V125 V126

2·498 72·93 117·6 3263 3265 6080

ev*121 ev*122 ev*123 ev*124 ev*125 ev*126

0 0·8944 4·47E-01 0 0 −1·57E-03
0 −4·47E-01 0·8944 0 0 −3·14E-03

0·9994 0 0 o 1·17E-02 0
−1·57E-02 0 0 0·8944 4·47E-01 0
−3·14E-02 0 0 −4·47E-01 0·8944 0

0 o 1·05E-02 0 0 1− o

V221 V222 V223 V224 V225 V226

3·994 92·25 148·8 3263 3267 6080

ev*221 ev*222 ev*223 ev*224 ev*225 ev*226

0 −0·7071 0·7071 0 0 −3·14E-03
0 0·7071 0·7070 0 0 −3·14E-03

0·9990 0 0 o 1·48E-02 0
−3·13E-02 0 0 −0·7071 0·7070 0
−3·13E-02 0 0 0·7071 0·7070 0

0 o 1·33E-02 0 0 1− o

It should be emphasized, however, that different types of plates (e.g., circular
plates) and different boundary conditions can just as well be chosen.

The following data are given: modulus of elasticity E=2·06×105 N/mm2;
Poisson’s ratio n=0·3; shear correction factor k= p2/12; length to width ratio
a/b=1·0, 2·0; thickness to length ratio H/a=0·01, 0·1, 0·2, 0·3.

The following symbols are used: fundamental frequency of the plate v0 (classical
theory); wave numbers m and n in x1 and x2-direction; branch number p of the
frequency (six branches for IT6, three branches for MT3 and one branch for CT1);
non-dimensional frequency parameter Vmnp =vmnp /v0; characteristic vector
evmnp =[Amnp , Bmnp , Cmnp , Dmnp , Emnp , Fmnp ]T for IT6, where Amnp to Fmnp correspond to
the independent kinematic quantities u1, u2, u3, 81H/2, 82H/2, 83H/2; non-dimen-
sional characteristic vector ev*mnp = evmnp /=evmnp =.

First we consider free vibrations. Table 1 shows examples of the
non-dimensional frequency parameters and the non-dimensional characteristic
vectors for a thin square plate based on IT6 for the wave numbers



   .198

T 2

As Table 1 but for a/b=2 and H/a=0·2

V181 V182 V183 V184 V185 V186

9·269 10·46 10·95 11·02 17·83 18·09

ev*181 ev*182 ev*183 ev*184 ev*185 ev*186

0 0·9981 0 6·05E-03 5·99E-02 0
0 −6·24E-02 0 9·68E-02 0·9580 0

0·9754 0 o 0 0 7·51E-02
−1·37E-02 0 0·9923 0 0 6·22E-02
−2·20E-01 0 −6·24E-02 0 0 0·9952

0 o 0 0·9953 −2·81E-01 0

V281 V282 V283 V284 V285 V286

9·325 10·52 11·01 11·07 17·93 18·19

ev*281 ev*282 ev*283 ev*284 ev*285 ev*286

0 0·9923 0 1·19E-02 1·19E-01 0
0 −1·24E-01 0 9·55E-02 0·9530 0

0·9757 0 o 0 0 7·47E-02
−2·72E-02 0 0·9923 0 0 1·24E-01
−2·18E-01 0 −1·24E-01 0 0 0·9895

0 o 0 0·9954 −2·79E-01 0

V381 V382 V383 V384 V385 V386

9·419 10·62 11·11 11·15 18·1 18·35

ev*381 ev*382 ev*383 ev*384 ev*385 ev*386

0 0·9829 0 1·75E-02 1·77E-01 0
0 −1·84E-01 0 9·34E-02 0·9449 0

0·9761 0 o 0 0 7·41E-02
−4·01E-02 0 0·9829 0 0 1·84E-01
−2·14E-01 0 −1·84E-01 0 0 0·9802

0 o 0 0·9955 −2·75E-01 0

† In fact this can be shown by inspection of the equation of motion (36). For the system
under consideration the submodels are neither statically nor dynamically coupled.
However, coupling occurs through external loading; see below.

[m, n]= [1, 1], [1, 2], [2, 2]. Numbers of an absolute value less than 1×10−4 are
replaced by o for clarity. None of the characteristic vectors contains more than
three elements. Elements with an absolute value of more than 0·5 which
predominate this mode are shown in bold. From the characteristic vectors it is
apparent that IT6 may be divided into two separate mechanical submodels.† The
first submodel represents the Reissner–Mindlin plate theory (MT3), to which the
third, fourth and fifth position in every characteristic vector for the branches
p=1, 4, 5 correspond. The second one contains the effects of the transverse
normal stress and the membrane forces, to which the first, second and sixth
position in every characteristic vector for the branches p=2, 3, 6 correspond. The
frequencies for the branches p=4, 5 and 6 correspond to the angles of rotation
of the transverse normal and to the transverse normal strain. They are very high
and almost independent of the wave numbers m and n (the largest frequency
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T 3

As Table 1 but for a/b=2 and H/a=0·3

V181 V182 V183 V184 V185 V186

6·257 6·804 6·972 7·121 11·83 11·91

ev*181 ev*182 ev*183 ev*184 ev*185 ev*186

0 3·71E-03 0·9981 0 6·14E-02 0
0 5·94E-02 −6·24E-01 0 0·9825 0

0·9881 0 0 o 0 5·19E-02
−9·61E-03 0 0 0·9981 0 6·23E-02
−1·54E-01 0 0 −6·24E-02 0 0·9967

0 0·9982 o 0 −1·76E-01 0

V281 V282 V283 V284 V285 V286

6·294 6·838 7·012 7·161 11·89 11·98

ev*281 ev*282 ev*283 ev*284 ev*285 ev*286

0 7·33E-03 0·9923 0 1·22E-01 0
0 5·86E-02 −1·24E-01 0 0·9770 0

0·9982 0 0 o 0 5·16E-02
−1·90E-02 0 0 0·9923 0 1·24E-01
−1·52E-01 0 0 −1·24E-01 0 0·9910

0 0·9983 o 0 −1·75E-01 0

V381 V382 V383 V384 V385 V386

6·356 6·895 7·08 7·226 12·01 12·09

ev*381 ev*382 ev*383 ev*384 ev*385 ev*386

0 1·08E-02 0·9829 0 1·82E-01 0
0 5·74E-02 −1·84E-01 0 0·9681 0

0·9884 0 0 o 0 5·12E-02
−2·80E-02 0 0 0·9829 0 1·84E-01
−1·49E-01 0 0 −1·84E-01 0 0·9816

0 0·9983 o 0 −1·73E-01 0

parameter is more than 6000 times the smallest one in the case m= n=1). This
leads to the well known conclusion that the effects of the transverse shear
deformation, the rotatory inertia and the transverse normal stress are negligible
for thin plates.

Similar results are obtained for thin rectangular plates and small values of the
wave numbers m and n. If, however, the wave numbers and/or the ratio of
thickness to span are increased, two interesting phenomena arise (see Tables 2 and
3). First, the ratio of the largest eigenfrequency to the smallest one becomes much
smaller (in Tables 2 and 3, the largest frequency parameter is not even twice the
smallest one). Hence, dense regions of frequencies arise in these cases. Second, the
positions of the frequencies are shifted. For example, the frequency for the
transverse normal strain (branch 6 in Table 1) is shifted to branch 4 (Table 2) or
even to branch 2 (Table 3), respectively. We conclude that the transverse normal
strain, negligible for thin plates, becomes increasingly important for thick plates.

Now we turn to forced vibrations. Figures 2–5 show the non-dimensional
dynamic deflection 2ũ/ũCT1 at the point Q of a rectangular plate subjected to the
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Figure 2. Normalized deflection versus time; a/b=2, H/a=0·01. – –, CT1; · – · –, MT3; ----,
IT6.

Figure 3. Normalized deflection versus time; a/b=2, H/a=0·1. Key as Figure 2.

concentrated load

fi (x1, x2, x3, t)=0 (i=1, 2),

f3(x1, x2, x3, t)=6−P0H(t)d(x1 − a/2, x2 − b/2)
0

for x3 =H/2
for x3 =−H/27
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Figure 4. Normalized deflection versus time; a/b=2, H/a=0·2. Key as Figure 2.

Figure 5. Normalized deflection versus time; a/b=2, H/a=0·3. Key as Figure 2.

(see Figure 1(b)). In the equation above H(t) denotes the Heaviside function. Since
all the results were scaled by one half of the dynamic deflection of the plates using
CT1, 0·5ũCT1 (to achieve a peak value of 2 in order to reflect the dynamic load
factor DLF) the absolute magnitude of P0 is of no particular importance. The
abscissa was scaled by T, the fundamental period of the plate.



   .202

Figure 2 shows—as expected—that the three theories are equivalent for a thin
plate. There is practically no difference between the three curves. This does not hold
any more as the ratio of thickness to span H/a increases; see Figures 3–5. The most
apparent change is the increase in the magnitude of the deflection. The higher order
theories MT3 and IT6 describe a softer system in general. Therefore, the period of
the vibration also increases. In addition, it can be seen that the peak deflections using
the various theories do not coincide in time because there are now different modes
which interchange energy. The increasing difference between the graphs for MT3
and IT6 is due to the influence of the change of thickness which MT3 neglects. It
is apparent that for thick plates the influence of the transverse normal stress has to
be accounted for.

7. CONCLUSIONS

In this paper a consistent plate theory with six independent variables is used,
augmenting previously published theories [14]. The generalized displacement vector
v� =[u1, u2, u3, 81, 82, 83]T contains the displacement components of the middle
surface of the plate, the angles of rotation of the transverse normal in the x1–x3 and
x2–x3 planes as well as the transverse normal strain.

It is shown that the improved theory may be divided into two separate mechanical
submodels: the first submodel represents the Reissner–Mindlin plate theory and the
second one contains the effects of the transverse normal stress and the membrane
forces. Because the thickness of the plate is taken into consideration these submodels
are coupled by an external load. Inside each submodel the state variables influence
each other by elastic coupling effects.

If an oblique external force is applied, each of its two components (perpendicular
and tangential to the surface) induces both submodels to respond. In contrast, the
classical plate theory and the moderately thick plate theory neglect the thickness of
the plate and assume that the external force acts directly on the middle surface of
the plate. As a result, each of the two components of an olique external force induces
only one of the two submodels to respond and has no influence on the response of
the other.

Numerical computations using the improved theory show that with the increases
of the wave numbers as well as the ratio of thickness to span, dense regions of
frequencies arise and the positions of the frequencies are shifted. For a thick
rectangular plate and moderately large wave numbers, for example, the mode
dominated by the transverse normal strain has the second lowest eigenfrequency
while for a thin square plate, this mode possesses the highest eigenfrequency, three
orders of magnitude larger than the lowest eigenfrequency for the combination of
wave numbers considered.

Because the classical plate theory and the moderately thick plate theory neglect
the influence of the transverse normal stress, the lower frequencies are lost in this
case. The contributions of these frequencies on the dynamic response are also lost.
Thus, a large error may be caused. Therefore, not only the influences of the
transverse shear deformation and the rotatory inertia, but also the effects of the
transverse normal stress must be included.
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Consequently, the dynamic model for thick elastic plates presented in this paper
has a wider range of application than the moderately thick plate theory. In addition,
it provides estimates for the validity of simpler theories as well as being sometimes
numerically more efficient than a FEM formulation.
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